报告主题:调和函数的性质(Properties of Harmonic Functions)
报告人:韩青教授(University of Norte Dame)
时间:2024年4月10日(星期三)14:00-15:00
地点:华东师范大学闵行校区数学楼102报告厅
摘要:Harmonic functions form an important class of functions in analysis. From the point of view of partial differential equations (PDEs), harmonic functions are solutions of the simplest linear elliptic equations. They have been studied intensively for centuries. In this talk, we will discuss global and local properties of harmonic functions. The Liouville Theorem asserts that any bounded harmonic functions in the entire space are constant. This result was generalized to many important geometric PDEs. In 1980s, Almgren introduced the concept of frequencies, which plays an important role in the study of local properties of harmonic functions, such as the vanishing order and the size of the nodal sets.
报告人简介:韩青,美国圣母大学数学系终身教授。纽约大学库朗数学研究所博士,芝加哥大学博士后。获美国Sloan Research Fellowship. 韩青教授长期致力于非线性偏微分方程和几何分析的研究,在等距嵌入、Monge-Ampere方程、调和函数的零点集和奇异集、退化方程等方面做出了一系列原创性的重要研究成果。文章发表于CPAM, Duke Math. J., GAFA, JDG, Adv. Math., Crelle’s Journal等国际知名期刊中。
观看方式:拔尖计划2.0全国线上书院直播